Miniature swept source for point of care optical frequency domain imaging.
نویسندگان
چکیده
Point of care (POC) medical technologies require portable, small, robust instrumentation for practical implementation. In their current embodiment, optical frequency domain imaging (OFDI) systems employ large form-factor wavelength-swept lasers, making them impractical in the POC environment. Here, we describe a first step toward a POC OFDI system by demonstrating a miniaturized swept-wavelength source. The laser is based on a tunable optical filter using a reflection grating and a miniature resonant scanning mirror. The laser achieves 75 nm of bandwidth centered at 1340 nm, a 0.24 nm instantaneous line width, a 15.3 kHz repetition rate with 12 mW peak output power, and a 30.4 kHz A-line rate when utilizing forward and backward sweeps. The entire laser system is approximately the size of a deck of cards and can operate on battery power for at least one hour.
منابع مشابه
Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range.
Optical frequency domain imaging (OFDI) in the 800-nm biological imaging window is demonstrated by using a novel wavelength-swept laser source. The laser output is tuned continuously from 815 to 870 nm at a 43.2-kHz repetition rate with 7-mW average power. Axial resolution of 10-mum in biological tissue and peak sensitivity of 96 dB are achieved. In vivo imaging of Xenopus laevis is demonstrate...
متن کاملSpectrally balanced detection for optical frequency domain imaging.
In optical frequency domain imaging (OFDI) or swept-source optical coherence tomography, balanced detection is required to suppress relative intensity noise (RIN). A regular implementation of balanced detection by combining reference and sample arm signal in a 50/50 coupler and detecting the differential output with a balanced receiver is however, not perfect. Since the splitting ratio of the 5...
متن کاملHigh-speed optical frequency-domain imaging.
We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of -110 dB w...
متن کاملRemoving the depth-degeneracy in optical frequency domain imaging with frequency shifting.
A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of ...
متن کاملHigh speed frequency swept light source for Fourier domain OCT at 20 kHz A-scan rate
We demonstrate a high-speed tunable, continuous wave laser source for Fourier domain OCT. The laser source is based on a fiber coupled, semiconductor optical amplifier and a tunable ultrahigh finesse, fiber Fabry Perot filter for frequency tuning. The light source provides frequency scan rates of up to 20,000 sweeps per second over a wavelength range of >70 nm FWHM at 1330 nm, yielding an axial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2009